VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. (I.T. : CBCS) IV-Semester Main Examinations, January-2021
Design and Analysis of Algorithms

Max. Marks: 60
Time: $\mathbf{2}$ hours
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A ($9 \times 2=18$ Marks)

Q. No.	Stem of the question	M	L	CO	PO
1.	Give the recurrence relation capturing the optimal execution time of the Towers of Hanoi problem with \boldsymbol{n} discs.	2	2	1	2
2.	What are the steps involved in solving a recurrence relation using the substitution method?	2	1	1	1
3.	What is prefix opcodes in Huffman coding?	2	1	2	1
4.	Write down the recurrence relation for the following algorithms: (a) Binary Search (b) Merge Sort	2	1	2	2
5.	Compute Fibonacci series using dynamic programming.	2	4	3	3
6.	What is meant by principle of optimality?	2	2	3	1
7.	Define branch and bound problem.	2	1	4	1
8.	Convert the following map with regions numbered from 1-5 to a graph and perform graph coloring.	2	3	4	3
	5				
	3				
9.	What is Satisfiability problem?	2	2	5	1
10.	Define P-class and NP-class of problems.	2	2	5	1
11.	What is an Algorithm? Give the characteristics of an Algorithm.	2	1	1	1
12.	List the general plan in divide and conquer algorithm. $\text { Part-B }(3 \times 14=42 \text { Marks })$	2	1	2	2
13. a)	Apply the master method to determine the asymptotic behavior of the function $T(n)$. (i) $T(n)=2 \cdot T(n / 4)+n^{0.51}$ (ii) $T(n)=\sqrt{ } 2 \cdot T(n / 2)+\log n$ (iii) $T(n)=6 \cdot T(n / 3)+n^{2} \cdot \log n$ (iv) $T(n)=3 \cdot T(n / 3)+n / 2$	8	3	1	2

b) For the given algorithm, calculate the time complexity using steps per execution method and recursive tree method.

Algorithm RSum (a, n)
/ a is an array with elements, and n is the size of the array.
\{
if $(n<=0)$ then
return 0.0;
else
return $\operatorname{RSum}(\mathrm{a}, \mathrm{n}-1)+\mathrm{a}[\mathrm{n}]$;
\}
14. a) Calculate the single source shortest path for the given directed graph using Dijikstra's algorithm by considering 1 as the source vertex.

b) Write an algorithm for Quick Sort. Also, analyze best, average and worstcase time complexity of Quick sort Algorithm.
15. a) Given a chain of four matrices $A 1=10 \times 100, A 2=100 \times 5, A 3=5 \times 50$, and $A 4=50 X 1$. Fully parenthesize the matrices in a way to minimize the total scalar operations. Also write the intermediate steps as well.
b) Explain optimal binary search tree algorithm with example and analyze its efficiency
16. a) Explain the Travelling salesman problem in Branch and bound with an example.
b) Write backtracking algorithm for the n-queens problem. Trace it with the help of 4-queens problem.
17. a) Define the decision version of the vertex (or node) cover problem (VCDP). Show that VCDP is NP-complete by reducing it to another NP-Hard problem.
b) What is SAT and 3-SAT problem? Prove that $3-S A T$ problem is npcomplete.22
18. a) Initially device an algorithm that arranges the array of elements in ascending order with time complexity $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$. Then reduce time complexity to $O(n \log n)$ for the same set of array of elements.
b) Solve the fractional knapsack problem in $\boldsymbol{O}(\boldsymbol{n})$ time. Also, prove that the fractional knapsack problem has the greedy-choice property.
19. Answer any two of the following:
a) Describe the Floyd - Warshall's algorithm with an example and analyze its efficiency.
b) Solve the following instance of Knapsack problem by Branch and bound Algorithm with $\mathrm{W}=15 \mathrm{Kg}$.

Item	Weight(in Kg)	Profit
1	5	$\$ 40$
2	7	$\$ 35$
3	2	$\$ 18$
4	4	$\$ 4$
5	5	$\$ 10$
6	1	$\$ 2$

c) Prove that Clique Decision Problem is NP-complete.

M: Marks;
L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60%
2	Knowledge on application and analysis (Level-3 \& 4)	40%
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable, subject to a maximum of 10\%)	-

