Code No. : 14626

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (I.T. : CBCS) IV-Semester Main Examinations, January-2021

Design and Analysis of Algorithms

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B

Part-A $(9 \times 2 = 18 Marks)$

Q. No.	Stem of the question	Μ	L	CO	PO
1.	Give the recurrence relation capturing the optimal execution time of the Towers of Hanoi problem with n discs.			1	2
2.	What are the steps involved in solving a recurrence relation using the substitution method?	2	1	1	1
3.	What is prefix opcodes in Huffman coding?	2	1	2	1
4.	Write down the recurrence relation for the following algorithms: (a) Binary Search	2	1	2	2
	(b) Merge Sort				
5.	Compute Fibonacci series using dynamic programming.	2	4	3	3
6.	What is meant by principle of optimality?	2	2	3	1
7.	Define branch and bound problem.	2	1	4	1
8.	Convert the following map with regions numbered from 1-5 to a graph and perform graph coloring.	2	3	4	3
	2 1 3				
9.	What is Satisfiability problem?	2	2	5	1
10.	Define P-class and NP-class of problems.	2	2	5	1
11.	What is an Algorithm? Give the characteristics of an Algorithm.	2	1	1	1
12.	List the general plan in divide and conquer algorithm.	2	1	2	2
	Part-B (3 × 14 = 42 Marks)				
13. a)	Apply the master method to determine the asymptotic behavior of the function T(n).	8	3	1	2
	(i) $T(n) = 2 \cdot T(n/4) + n^{0.51}$				
	(ii) $T(n) = \sqrt{2 \cdot T(n/2)} + \log n$ (iii) $T(n) = 6 \cdot T(n/3) + n^2 \cdot \log n$				
	(iv) $T(n) = 3 \cdot T(n/3) + n/2$				

Contd...3

0.00								
18. a)	Initially device an algorithm that arranges the array of elements in ascending order with time complexity $O(n^2)$. Then reduce time complexity to $O(nlogn)$ for the same set of array of elements.				7	4	1	3
b)	Solve the fractional knapsack problem in $O(n)$ time. Also, prove that the fractional knapsack problem has the greedy-choice property.			7	4	2	3	
19.	Answer	any <i>two</i> of the follo	owing:					
a)	Describe efficience		all's algor	ithm with an example and analyze its	7	2	3	2
b)	Solve the following instance of Knapsack problem by Branch and bound Algorithm with W=15 Kg.				7	3	4	2
	Item	Weight(in Kg)	Profit					
	1	5	\$40					
	2	7	\$35					
	. 3	2	\$18					
	4	4	\$4					
	5	5	\$10					
	6	1	\$2					
c)	Prove th	at Clique Decision	Problem	is NP-complete.	7	2	5	2

:: 3 ::

-\$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome;

PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	60%
2	Knowledge on application and analysis (Level-3 & 4)	40%
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable, subject to a maximum of 10%)	-
